Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies

نویسندگان

  • Vanna Sanna
  • Anna Maria Roggio
  • Anna Maria Posadino
  • Annalisa Cossu
  • Salvatore Marceddu
  • Alberto Mariani
  • Valeria Alzari
  • Sergio Uzzau
  • Gianfranco Pintus
  • Mario Sechi
چکیده

Docetaxel (Dtx) chemotherapy is the optional treatment in patients with hormone-refractory metastatic prostate cancer, and Dtx-loaded polymeric nanoparticles (NPs) have the potential to induce durable clinical responses. However, alternative formulations are needed to overcome the serious side effects, also due to the adjuvant used, and to improve the clinical efficacy of the drug.In the present study, two novel biodegradable block-copolymers, poly(lactide-co-caprolactone) (PLA-PCL) and poly(lactide-co-caprolactone-co-glycolide) (PLGA-PCL), were explored for the formulation of Dtx-loaded NPs and compared with PLA- and PLGA-NPs. The nanosystems were prepared by an original nanoprecipitation method, using Pluronic F-127 as surfactant agent, and were characterized in terms of morphology, size distribution, encapsulation efficiency, crystalline structure, and in vitro release. To evaluate the potential anticancer efficacy of a nanoparticulate system, in vitro cytotoxicity studies on human prostate cancer cell line (PC3) were carried out. NPs were found to be of spherical shape with an average diameter in the range of 100 to 200 nm and a unimodal particle size distribution. Dtx was incorporated into the PLGA-PCL NPs with higher (p < 0.05) encapsulation efficiency than that of other polymers. Differential scanning calorimetry suggested that Dtx was molecularly dispersed in the polymeric matrices. In vitro drug release study showed that release profiles of Dtx varied on the bases of characteristics of polymers used for formulation. PLA-PCL and PLGA-PCL drug loaded NPs shared an overlapping release profiles, and are able to release about 90% of drug within 6 h, when compared with PLA- and PLGA-NPs. Moreover, cytotoxicity studies demonstrated advantages of the Dtx-loaded PLGA-PCL NPs over pure Dtx in both time- and concentration-dependent manner. In particular, an increase of 20% of PC3 growth inhibition was determined by PLGA-PCL NPs with respect to free drug after 72 h incubation and at all tested Dtx concentration. In summary, PLGA-PCL copolymer may be considered as an attractive and promising polymeric material for the formulation of Dtx NPs as delivery system for prostate cancer treatment, and can also be pursued as a validated system in a more large context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoparticles of Poly(Lactide-Co-Glycolide)-d-a-Tocopheryl Polyethylene Glycol 1000 Succinate Random Copolymer for Cancer Treatment

Cancer is the leading cause of death worldwide. Nanomaterials and nanotechnologies could provide potential solutions. In this research, a novel biodegradable poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) random copolymer was synthesized from lactide, glycolide and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by ring-opening polymerization u...

متن کامل

A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment

Drug resistance has become a main obstacle for the effective treatment of lung cancer. To address this problem, a novel biocompatible nanoscale package, poly(d,l-lactide-co-glycolide)-Tween 80, was designed and synthesized to overcome paclitaxel (PTX) resistance in a PTX-resistant human lung cancer cell line. The poly(d,l-lactide-co-glycolide) (PLGA)-Tween 80 nanoparticles (NPs) could efficient...

متن کامل

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect

In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) NPs with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cyto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011